24 research outputs found

    Efficient Maximum A-Posteriori Inference in Markov Logic and Application in Description Logics

    Full text link
    Maximum a-posteriori (MAP) query in statistical relational models computes the most probable world given evidence and further knowledge about the domain. It is arguably one of the most important types of computational problems, since it is also used as a subroutine in weight learning algorithms. In this thesis, we discuss an improved inference algorithm and an application for MAP queries. We focus on Markov logic (ML) as statistical relational formalism. Markov logic combines Markov networks with first-order logic by attaching weights to first-order formulas. For inference, we improve existing work which translates MAP queries to integer linear programs (ILP). The motivation is that existing ILP solvers are very stable and fast and are able to precisely estimate the quality of an intermediate solution. In our work, we focus on improving the translation process such that we result in ILPs having fewer variables and fewer constraints. Our main contribution is the Cutting Plane Aggregation (CPA) approach which leverages symmetries in ML networks and parallelizes MAP inference. Additionally, we integrate the cutting plane inference (Riedel 2008) algorithm which significantly reduces the number of groundings by solving multiple smaller ILPs instead of one large ILP. We present the new Markov logic engine RockIt which outperforms state-of-the-art engines in standard Markov logic benchmarks. Afterwards, we apply the MAP query to description logics. Description logics (DL) are knowledge representation formalisms whose expressivity is higher than propositional logic but lower than first-order logic. The most popular DLs have been standardized in the ontology language OWL and are an elementary component in the Semantic Web. We combine Markov logic, which essentially follows the semantic of a log-linear model, with description logics to log-linear description logics. In log-linear description logic weights can be attached to any description logic axiom. Furthermore, we introduce a new query type which computes the most-probable 'coherent' world. Possible applications of log-linear description logics are mainly located in the area of ontology learning and data integration. With our novel log-linear description logic reasoner ELog, we experimentally show that more expressivity increases quality and that the solutions of optimal solving strategies have higher quality than the solutions of approximate solving strategies

    LODE: Linking Digital Humanities Content to the Web of Data

    Full text link
    Numerous digital humanities projects maintain their data collections in the form of text, images, and metadata. While data may be stored in many formats, from plain text to XML to relational databases, the use of the resource description framework (RDF) as a standardized representation has gained considerable traction during the last five years. Almost every digital humanities meeting has at least one session concerned with the topic of digital humanities, RDF, and linked data. While most existing work in linked data has focused on improving algorithms for entity matching, the aim of the LinkedHumanities project is to build digital humanities tools that work "out of the box," enabling their use by humanities scholars, computer scientists, librarians, and information scientists alike. With this paper, we report on the Linked Open Data Enhancer (LODE) framework developed as part of the LinkedHumanities project. With LODE we support non-technical users to enrich a local RDF repository with high-quality data from the Linked Open Data cloud. LODE links and enhances the local RDF repository without compromising the quality of the data. In particular, LODE supports the user in the enhancement and linking process by providing intuitive user-interfaces and by suggesting high-quality linking candidates using tailored matching algorithms. We hope that the LODE framework will be useful to digital humanities scholars complementing other digital humanities tools

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    CODI: Combinatorial Optimization for Data Integration - Results for OAEI 2010

    Full text link
    The problem of linking entities in heterogeneous and decentralized data repositories is the driving force behind the data and knowledge integration effort. In this paper, we describe our probabilistic-logical alignment system CODI (Combinatorial Optimization for Data Integration). The system provides a declarative framework for the alignment of individuals, concepts, and properties of two heterogeneous ontologies. CODI leverages both logical schema information and lexical similarity measures with a well-defined semantics for A-Box and T-Box matching. The alignments are computed by solving corresponding combinatorial optimization problems

    ELOG: A Probabilistic Reasoner for OWL EL

    Full text link
    Log-linear description logics are probabilistic logics combining several concepts and methods from the areas of knowledge representation and reasoning and statistical relational AI. We describe some of the implementation details of the log-linear reasoner ELOG. The reasoner employs database technology to dynamically transform inference problems to integer linear programs (ILP). In order to lower the size of the ILPs and reduce the complexity we employ a form of cutting plane inference during reasoning

    A Study in User-Centric Data Integration (Best Paper Award)

    Full text link
    Data integration is a central problem in information systems. While the problem of data integration has been studied intensively from a technical point of view, less attention has been paid to user aspects of data integration. In this work, we present a user-centric approach to data integration that supports the user in finding and validating mapping rules between heterogeneous data sources. The results of our report underline that the user-centric approach leads to better integration results and is perceived as being more intuitive, especially for users with little or no technical knowledge

    Coherent Top-k Ontology Alignment for OWL EL

    Full text link
    The integration of distributed information sources is a key challenge in data and knowledge management applications. Instances of this problem range from mapping schemas of heterogeneous databases to object reconciliation in linked open data repositories. In this paper, we approach the problem of aligning description logic ontologies. We focus particularly on the problem of computing coherent alignments, that is, alignments that do not lead to unsatisfiable classes in the resulting merged ontologies. We believe that considering coherence during the alignment process is important as it is this logical concept that distinguishes ontology alignment from other data integration problems. Depending on the heterogeneity of the ontologies it is often more reasonable to generate alignments with at most k correspondences because not every entity has a matchable counterpart. We describe both greedy and optimal algorithms for computing coherent top-k alignments between OWL EL ontologies and assess their performance relative to state-of-the-art matching systems

    Towards Joint Inference for Complex Ontology Matching

    Full text link
    In this paper, we show how to model the matching problem as a problem of joint inference. In opposite to existing approaches, we distinguish between the layer of labels and the layer of concepts and properties. Entities from both layers appear as first class citizens in our model. We present an ex-ample and explain the benefits of our approach. Moreover, we argue that our approach can be extended to generate correspondences involving complex concept descriptions

    Log-Linear Description Logics

    Full text link
    Log-linear description logics are a family of probabilistic logics integrating various concepts and methods from the areas of knowledge representation and reasoning and statistical relational AI. We define the syntax and semantics of log-linear description logics, describe a convenient representation as sets of first-order formulas, and discuss computational and algorithmic aspects of probabilistic queries in the language. The paper concludes with an experimental evaluation of an implementation of a log-linear DL reasoner

    RockIt: Exploiting Parallelism and Symmetry for MAP Inference in Statistical Relational Models

    Full text link
    ROCKIT is a maximum a-posteriori (MAP) query engine for statistical relational models. MAP inference in graphical models is an optimization problem which can be compiled to integer linear programs (ILPs). We describe several advances in translating MAP queries to ILP instances and present the novel meta-algorithm cutting plane aggregation (CPA). CPA exploits local context-specific symmetries and bundles up sets of linear constraints. The resulting counting constraints lead to more compact ILPs and make the symmetry of the ground model more explicit to state-of-the-art ILP solvers. Moreover, ROCKIT parallelizes most parts of the MAP inference pipeline taking advantage of ubiquitous shared-memory multi-core architectures. We report on extensive experiments with Markov logic network (MLN) benchmarks showing that ROCKIT outperforms the state-of-the-art systems ALCHEMY, MARKOV THEBEAST, and TUFFY both in terms of efficiency and quality of results
    corecore